Алгебра 9 класс

Данная рабочая программа по алгебре ориентирована на учащихся 9 класса общеобразовательной школы.

Данная рабочая программа по алгебре составлена на основе следующих документов:

1.                  Федеральный государственный образовательный стандарт основного общего образования,  утвержденный Министерством образования и науки  от 17.12.2010г. № 1897.

2.                  Приказы Минобрнауки России от 29.12.2014 №1644, от 31.12.2015 №1577  «О внесении изменений в ФГОС ООО от  17 декабря 2010 г. №1897.

3.                   Авторская  программа. Г. Миндюк. Алгебра. Предметная линия учебников Ю.Н. Макарычева и других. 7 – 9 классы: пособие для учителей общеобразовательных организаций. – Москва: «Просвещение», 2014г.

4.                  Примерная программа основного общего образования по математике. (Сборник «Программы общеобразовательных учреждений 7-9классы» / составитель Т.А. Бурмистрова, изд: Просвещение 2011г.)

5.                  Программа для общеобразовательных школ, гимназий, лицеев. (Сборник «Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.» / Сост. Г.М. Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2008; 4-е изд. – 2008г.)

Рабочая программа  по алгебре для 9 класса рассчитана на 105 часов в год, из расчёта 3 часа в неделю.

Срок реализации программы  - 1 учебный год.

Программа соответствует учебнику Макарычев Ю.Н., Миндюк Н.Г. Нешков К.И., Суворова С.Б. Алгебра. 9 класс. М. Просвещение. 2017г.

 

Планируемые  образовательные результаты. 

 

Результаты изучения предмета «Алгебра» в 9 классе представлены на трех уровнях: личностном, метапредметном и предметном.

Личностные  результаты

- сформированность ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

- сформированность компонентов целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

- сформированность  коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

- креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

- умение контролировать процесс и результат учебной математической деятельности;

- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметные результаты:

- умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

- умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

- умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

- осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

- умение устанавливать причинно-следственные связи; строить логичное рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

- умение создавать, применять и преобразовывать знаково-символические средства,  модели и схемы для решения учебных и познавательных задач;

- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

- сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ - компетентности);

- сформированность первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

- умение находить в различных источниках информацию, необходимую   для   решения   математических   проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

- умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

- понимание сущности  алгоритмических  предписаний   и умение действовать в соответствии с предложенным алгоритмом;

- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметные результаты:

- умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

- владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, иметь представление о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

- умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

- умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;

- умение решать линейные и квадратные уравнения, неравенства первой и второй степени, а также приводимые к ним уравнения, неравенства, системы; использовать графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

- овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;

- овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

-  умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

 

Планируемые результаты изучения учебного предмета

 

Выпускник научится:

- сравнивать и упорядочивать рациональные числа;

- выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применение калькулятора;

- использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты

- применять понятия, связанные с делимостью натуральных чисел

- использовать начальные представления о множестве действительных чисел;

- владеть понятием квадратного корня, применять его в вычислениях;

- использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

- оперировать понятиями "тождество", "тождественное преобразование", решать задачи, содержащие буквенные данные, работать с формулами;

- оперировать понятиями "квадратный корень", применять его в вычислениях;

- выполнять преобразование выражений, содержащих степени с целыми показателями и квадратные корни;

- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

- выполнять разложение многочленов на множители;

- применять преобразования выражений для решения различных задач из математики, смежных предметов, из реальной практики.

- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

- применять аналитический и графический языки для интерпретации понятий, связанных с понятием уравнения, для решения уравнений и систем уравнений;

- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

- проводить простейшие исследования уравнений и систем уравнений, в том числе с применением графических представлений (устанавливать, имеет ли уравнение или система уравнений решения, если имеет, то сколько и пр.)

- понимать терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

- решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

- понимать терминологию и символику, связанные с понятием множества, выполнять операции над множествами;

- использовать начальные представления о множестве действительных чисел;Хочу такой сайт

- понимать и использовать функциональные понятия, язык (термины, символические обозначения); строить графики элементарных функций, исследовать свойства числовых функций на основе изучения поведения их графиков;

- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

- понимать и использовать язык последовательностей (термины, символические обозначения);

- применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

- использовать простейшие способы представления и анализа статистических данных.

-находить относительную частоту и вероятность случайного события.

-решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность:

- познакомиться с позиционными системами счисления с основаниями, отличными от 10;

- углубить и развить представления о натуральных числах и свойствах делимости;

- научиться использовать приемы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

- развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

-развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

- понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

- понять, что погрешность результата вычисления должна быть соизмерима с погрешностью исходных данных.

- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

- применять тождественные преобразования для решения задач из различных разделов курса.

- использовать широкий спектр специальных приемов решения уравнений и систем уравнений; уверенно применять аппарат уравнений и неравенств для решения разнообразных задач из математики, смежных предметов, реальной практики;

- освоить разнообразные приёмы доказательства неравенств;

- применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

- применять аппарат неравенства для решения разнообразных математических задач, задач из смежных предметов и практики.

- развивать представление о множествах;

- развивать представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

- развивать и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций стоить более сложные графики (кусочно-заданные, с "выколотыми" точками и т. п.);

- использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

- решать комбинированные задачи с применением формул n-го члена и суммы nпервых членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

- понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую - с экспоненциальным ростом.

- приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

- научиться приводить содержательные примеры использования для описания данных.

-приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

-научиться некоторым специальным приёмам решения комбинаторных задач.

- понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения

- понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

 

Содержание учебного предмета «Алгебра » 9 класс

(3 часа в неделю, всего 105 ч.)

 

№ п/п

Тематический блок

 

Кол-во часов

Разделы

1

Вводное повторение

4

2

Квадратичная функция 

22

3

Уравнения и неравенства с одной переменной 

14

4

Уравнения и неравенства с двумя переменными 

19

5

Арифметическая и геометрическая прогрессии 

15

6

Элементы комбинаторики и теории вероятности 

13

7

Итоговое повторение

18

 

Всего:

105ч

Практическая часть

Контрольные  работы

9

Самостоятельные работы

8

Тесты

8

 
Алгебра 9 класс Документ подписан электронной подписью Серийный номер 603332450510203670830559428146817986133868575784 Директор/Заведующий Корякин Владимир Валентинович Дата подписания документа 03.02.2022 16:41:01 (скачать)
Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

ВНИМАНИЕ!

Срок действия лицензии на использования программного обеспечения окончен 26.10.2023.
Для получения информации с сайта свяжитесь с Администрацией образовательной организации по телефону +7(86558) 2-29-86

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».